RFFGen
 All Classes Namespaces Files Functions Typedefs Enumerations Groups
Files | Functions
Biomechanics

Models for the description of different biologial soft tissues. More...

Files

file  adiposeTissue_SommerHolzapfel.hh
 Model for adipose tissue of Sommer et al.: Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater., 9:9036-9048, 2013.
 
file  muscleTissue_Martins.hh
 Versions of the muscle model of Martins et al.: A numerical model of passive and active bahevaior of skeletal muscles. Comp. Meth. Appl. Mech. Eng. 151:419-433, 1998.
 
file  skinTissue_Hendriks.hh
 Versions of the skin model of Hendriks: Mechanical behavior of human epidermal and dermal layers in vivo. PhD thesis, Technische Universiteit Eindhoven, 2005.
 

Functions

template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleAdiposeTissue_SommerHolzapfel (double cCells, double k1, double k2, double kappa, const Matrix &M, const Matrix &F)
 Model for adipose tissue of Sommer et al.: Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater., 9:9036-9048, 2013. More...
 
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleAdiposeTissue_SommerHolzapfel (const Matrix &M, const Matrix &F)
 Model for adipose tissue of Sommer et al.: Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater., 9:9036-9048, 2013. More...
 
template<class Inflation , class Compression , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleAdiposeTissue_SommerHolzapfel (double cCells, double k1, double k2, double kappa, double d0, double d1, const Matrix &M, const Matrix &F)
 Compressible version of the model for adipose tissue of Sommer et al.: Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater., 9:9036-9048, 2013. More...
 
template<class Inflation , class Compression , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleAdiposeTissue_SommerHolzapfel (double d0, double d1, const Matrix &M, const Matrix &F)
 Compressible version of the model for adipose tissue of Sommer et al.: Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater., 9:9036-9048, 2013. Material parameters are taken from the same publication, Table 2, i.e. $c_\mathrm{Cells}=0.15 (\,\mathrm{kPa})$, $k_1=0.8 (\,\mathrm{kPa})$, $k_2=47.3$ and $\kappa=0.09$. More...
 
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleMuscleTissue_Martins (double c, double b, double A, double a, const Matrix &M, const Matrix &F)
 Incompressible version of the model for muscle tissue of Martins et al.: A numerical model of passive and active bahevaior of skeletal muscles. Comp. Meth. Appl. Mech. Eng. 151:419-433, 1998. More...
 
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleMuscleTissue_Martins (const Matrix &M, const Matrix &F)
 Incompressible version of the model for muscle tissue of Martins et al.: A numerical model of passive and active bahevaior of skeletal muscles. Comp. Meth. Appl. Mech. Eng. 151:419-433, 1998. More...
 
template<class Inflation , class Compression , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleMuscleTissue_Martins (double c, double b, double A, double a, double d0, double d1, const Matrix &M, const Matrix &F)
 Compressible version of the model for muscle tissue of Martins et al.: A numerical model of passive and active bahevaior of skeletal muscles. Comp. Meth. Appl. Mech. Eng. 151:419-433, 1998. More...
 
template<class Inflation , class Compression , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleMuscleTissue_Martins (double d0, double d1, const Matrix &M, const Matrix &F)
 Compressible version of the model for muscle tissue of Martins et al.: A numerical model of passive and active bahevaior of skeletal muscles. Comp. Meth. Appl. Mech. Eng. 151:419-433, 1998. More...
 
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleSkin_Hendriks (double c0, double c1, const Matrix &F)
 Model for skin tissue of Hendriks: Mechanical behavior of human epidermal and dermal layers in vivo. PhD thesis, Technische Universiteit Eindhoven, 2005. More...
 
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleSkin_Hendriks (const Matrix &F)
 Model for skin tissue of Hendriks: Mechanical behavior of human epidermal and dermal layers in vivo. PhD thesis, Technische Universiteit Eindhoven, 2005. More...
 
template<class InflationPenalty , class CompressionPenalty , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleSkin_Hendriks (double c0, double c1, double d0, double d1, const Matrix &F)
 Compressible version of the model for skin tissue of Hendriks: Mechanical behavior of human epidermal and dermal layers in vivo. PhD thesis, Technische Universiteit Eindhoven, 2005. More...
 
template<class InflationPenalty , class CompressionPenalty , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleSkin_Hendriks (double d0, double d1, const Matrix &F)
 Compressible version of the model for skin tissue of Hendriks: Mechanical behavior of human epidermal and dermal layers in vivo. PhD thesis, Technische Universiteit Eindhoven, 2005. More...
 

Detailed Description

Models for the description of different biologial soft tissues.

Function Documentation

template<class Inflation , class Compression , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleAdiposeTissue_SommerHolzapfel ( double  cCells,
double  k1,
double  k2,
double  kappa,
double  d0,
double  d1,
const Matrix &  M,
const Matrix &  F 
)

Compressible version of the model for adipose tissue of Sommer et al.: Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater., 9:9036-9048, 2013.

Implementation of the stored energy function $ W(F)= c_\mathrm{Cells}(\iota_1-3) + \frac{k_1}{k_2}\exp(k_2(\kappa\iota_1+(1-3\kappa)*\iota_4)^2-1) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression} $, where $ \iota_1,\iota_4 $ are the first and first mixed invariant of the strain tensor $F^T F$.

Parameters
cCellsscaling of the neo-Hookean model for the description of the adipocytes as cell foam.
k1stress-like parameter of the model for the interlobular septa
k2dimensionless parameter of the model for the interlobular septa
kappafiber dispersion parameter $(0\le\kappa\le\frac{1}{3})$.
Mstructural tensor describing the fiber direction of the interlobular septa, i.e. $M=v\otimesv$ for a fiber direction $v$
d0scaling of the penalty function for inflation
d1scaling of the penalty function for compression
Finitial deformation gradient
template<class Inflation , class Compression , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleAdiposeTissue_SommerHolzapfel ( double  d0,
double  d1,
const Matrix &  M,
const Matrix &  F 
)

Compressible version of the model for adipose tissue of Sommer et al.: Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater., 9:9036-9048, 2013. Material parameters are taken from the same publication, Table 2, i.e. $c_\mathrm{Cells}=0.15 (\,\mathrm{kPa})$, $k_1=0.8 (\,\mathrm{kPa})$, $k_2=47.3$ and $\kappa=0.09$.

Implementation of the stored energy function $ W(F)= c_\mathrm{Cells}(\iota_1-3) + \frac{k_1}{k_2}\exp(k_2(\kappa\iota_1+(1-3\kappa)*\iota_4)^2-1) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression} $, where $ \iota_1,\iota_4 $ are the first and first mixed invariant of the strain tensor $F^T F$.

Parameters
d0scaling of the penalty function for inflation
d1scaling of the penalty function for compression
Mstructural tensor describing the fiber direction of the interlobular septa, i.e. $M=v\otimesv$ for a fiber direction $v$
Finitial deformation gradient
template<class Inflation , class Compression , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleMuscleTissue_Martins ( double  c,
double  b,
double  A,
double  a,
double  d0,
double  d1,
const Matrix &  M,
const Matrix &  F 
)

Compressible version of the model for muscle tissue of Martins et al.: A numerical model of passive and active bahevaior of skeletal muscles. Comp. Meth. Appl. Mech. Eng. 151:419-433, 1998.

Implementation of the stored energy function $ W(F)=c(\exp(b(\bar\iota_1-3))-1) + A(\exp(a(\bar\iota_6-1)^2)-1) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression} $, where $\bar\iota_1,\bar\iota_6=\bar\iota_4$ are the first modified principal and the third modified mixed invariant of the strain tensor $F^T F$.

Parameters
cfirst material parameter for the isotropic part
bsecond material parameter for the isotropic part
Afirst material parameter for the anisotropic part
asecond material parameter for the anisotropic part
d0material parameter for the penalty for inflation
d1material parameter for the penalty for compression
Mstructural (rank-one) tensor describing the initial orientation of muscle fibers for $F=I$, where $I$ is the unit matrix.
Fdeformation gradient
template<class Inflation , class Compression , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleMuscleTissue_Martins ( double  d0,
double  d1,
const Matrix &  M,
const Matrix &  F 
)

Compressible version of the model for muscle tissue of Martins et al.: A numerical model of passive and active bahevaior of skeletal muscles. Comp. Meth. Appl. Mech. Eng. 151:419-433, 1998.

Implementation of the stored energy function $ W(F)=c(\exp(b(\bar\iota_1-3))-1) + A(\exp(a(\bar\iota_6-1)^2)-1) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression}(\det(F))$, where $\bar\iota_1,\bar\iota_6=\bar\iota_4$ are the first modified principal and the third modified mixed invariant of the strain tensor $F^T F$.

Material parameters taken from the above mentioned publication, i.e. $a=0.387 (\,\mathrm{kPa})$, $ b = 23.46 $, $ A = 0.584 (\,\mathrm{kPa}) $ and $ a = 12.43$.

Parameters
d0material parameter for the penalty for inflation
d1material parameter for the penalty for compression
Mstructural (rank-one) tensor describing the initial orientation of muscle fibers for $F=I$, where $I$ is the unit matrix.
Fdeformation gradient
template<class InflationPenalty , class CompressionPenalty , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleSkin_Hendriks ( double  c0,
double  c1,
double  d0,
double  d1,
const Matrix &  F 
)

Compressible version of the model for skin tissue of Hendriks: Mechanical behavior of human epidermal and dermal layers in vivo. PhD thesis, Technische Universiteit Eindhoven, 2005.

Implementation of the stored energy function $W(F)=c_0(\iota_1-3) + c_1(\iota_1-3)(\iota_2-3) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression}$, where $\iota_1,\iota_2$ are the first and second principal invariants of the strain tensor $F^T F$.

Parameters
c0scaling of the shifted first principal invariant
c1scaling of the product of shifted first and second principal invariant
d0scaling of the penalty function for inflation
d1scaling of the penalty function for compression
Finitial deformation gradient
template<class InflationPenalty , class CompressionPenalty , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleSkin_Hendriks ( double  d0,
double  d1,
const Matrix &  F 
)

Compressible version of the model for skin tissue of Hendriks: Mechanical behavior of human epidermal and dermal layers in vivo. PhD thesis, Technische Universiteit Eindhoven, 2005.

Implementation of the stored energy function $W(F)=c_0(\iota_1-3) + c_1(\iota_1-3)(\iota_2-3) + d_0\Gamma_\mathrm{Inflation}(\det(F)) + d_1\Gamma_\mathrm{Compression}$, where $\iota_1,\iota_2$ are the first and second principal invariants of the strain tensor $F^T F$.

Material parameters are taken from Xu and Lu: Introduction to Skin Biothermomechanics and Thermal Pain, chapter Skin Biomechanics Modeling, pages 154-206, Springer and Science Press Beijing, 2011, i.e $c_0=9.4 (\,\mathrm{kPa})$ and $ c_1 = 82 (\,\mathrm{kPa}) $.

Parameters
d0scaling of the penalty function for inflation
d1scaling of the penalty function for compression
Finitial deformation gradient
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleAdiposeTissue_SommerHolzapfel ( double  cCells,
double  k1,
double  k2,
double  kappa,
const Matrix &  M,
const Matrix &  F 
)

Model for adipose tissue of Sommer et al.: Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater., 9:9036-9048, 2013.

Implementation of the stored energy function $ W(F)= c_\mathrm{Cells}(\iota_1-3) + \frac{k_1}{k_2}\exp(k_2(\kappa\iota_1+(1-3\kappa)*\iota_4)^2-1) $, where $ \iota_1,\iota_4 $ are the first and first mixed invariant of the strain tensor $F^T F$.

Parameters
cCellsscaling of the neo-Hookean model for the description of the adipocytes as cell foam.
k1stress-like parameter of the model for the interlobular septa
k2dimensionless parameter of the model for the interlobular septa
kappafiber dispersion parameter $(0\le\kappa\le\frac{1}{3})$.
Mstructural tensor describing the fiber direction of the interlobular septa, i.e. $M=v\otimesv$ for a fiber direction $v$
Finitial deformation gradient
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleAdiposeTissue_SommerHolzapfel ( const Matrix &  M,
const Matrix &  F 
)

Model for adipose tissue of Sommer et al.: Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater., 9:9036-9048, 2013.

Implementation of the stored energy function $ W(F)= c_\mathrm{Cells}(\iota_1-3) + \frac{k_1}{k_2}\exp(k_2(\kappa\iota_1+(1-3\kappa)*\iota_4)^2-1) $, where $ \iota_1,\iota_4 $ are the first and first mixed invariant of the strain tensor $F^T F$.

Material parameters are taken from the above mentioned publication, Table 2, i.e. $c_\mathrm{Cells}=0.15 (\,\mathrm{kPa})$, $k_1=0.8 (\,\mathrm{kPa})$, $k_2=47.3$ and $\kappa=0.09$.

Parameters
Mstructural tensor describing the fiber direction of the interlobular septa, i.e. $M=v\otimesv$ for a fiber direction $v$
Finitial deformation gradient
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleMuscleTissue_Martins ( double  c,
double  b,
double  A,
double  a,
const Matrix &  M,
const Matrix &  F 
)

Incompressible version of the model for muscle tissue of Martins et al.: A numerical model of passive and active bahevaior of skeletal muscles. Comp. Meth. Appl. Mech. Eng. 151:419-433, 1998.

Implementation of the stored energy function $ W(F)=c(\exp(b(\bar\iota_1-3))-1) + A(\exp(a(\bar\iota_6-1)^2)-1) $, where $\bar\iota_1,\bar\iota_6=\bar\iota_4$ are the first modified principal and the third modified mixed invariant of the strain tensor $F^T F$.

Parameters
cfirst material parameter for the isotropic part
bsecond material parameter for the isotropic part
Afirst material parameter for the anisotropic part
asecond material parameter for the anisotropic part
Mstructural (rank-one) tensor describing the initial orientation of muscle fibers for $F=I$, where $I$ is the unit matrix.
Fdeformation gradient
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleMuscleTissue_Martins ( const Matrix &  M,
const Matrix &  F 
)

Incompressible version of the model for muscle tissue of Martins et al.: A numerical model of passive and active bahevaior of skeletal muscles. Comp. Meth. Appl. Mech. Eng. 151:419-433, 1998.

Implementation of the stored energy function $ W(F)=c(\exp(b(\bar\iota_1-3))-1) + A(\exp(a(\bar\iota_6-1)^2)-1) $, where $\bar\iota_1,\bar\iota_6=\bar\iota_4$ are the first modified principal and the third modified mixed invariant of the strain tensor $F^T F$.

Material parameters taken from the same above mentioned publication, i.e. $a=0.387 (\,\mathrm{kPa})$, $ b = 23.46 $, $ A = 0.584 (\,\mathrm{kPa}) $ and $ a = 12.43$.

Parameters
Mstructural (rank-one) tensor describing the initial orientation of muscle fibers for $F=I$, where $I$ is the unit matrix.
Fdeformation gradient
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleSkin_Hendriks ( double  c0,
double  c1,
const Matrix &  F 
)

Model for skin tissue of Hendriks: Mechanical behavior of human epidermal and dermal layers in vivo. PhD thesis, Technische Universiteit Eindhoven, 2005.

Implementation of the stored energy function $W(F)=c_0(\iota_1-3) + c_1(\iota_1-3)(\iota_2-3)$, where $\iota_1,\iota_2$ are the first and second principal invariants of the strain tensor $F^T F$.

Parameters
c0scaling of the shifted first principal invariant
c1scaling of the product of shifted first and second principal invariant
Finitial deformation gradient
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleSkin_Hendriks ( const Matrix &  F)

Model for skin tissue of Hendriks: Mechanical behavior of human epidermal and dermal layers in vivo. PhD thesis, Technische Universiteit Eindhoven, 2005.

Implementation of the stored energy function $W(F)=c_0(\iota_1-3) + c_1(\iota_1-3)(\iota_2-3)$, where $\iota_1,\iota_2$ are the first and second principal invariants of the strain tensor $F^T F$.

Material parameters are taken from Xu and Lu: Introduction to Skin Biothermomechanics and Thermal Pain, chapter Skin Biomechanics Modeling, pages 154-206, Springer and Science Press Beijing, 2011, i.e $c_0=9.4 (\,\mathrm{kPa})$ and $ c_1 = 82 (\,\mathrm{kPa}) $.

Parameters
Finitial deformation gradient