RFFGen
 All Classes Namespaces Files Functions Typedefs Enumerations Groups
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 123]
oNChecksStatic checks for the presence of different operators and functions
oNCMathWrappers for functions from <cmath>
oNLinearAlgebraFunctionality from linear algebra such as (modified) principal and mixed matrix invariants
oNMathematicalOperationsMathematical operations and corresponding differentation rules
\NRFFGenMain namespace of the RFFGen library
 oNCMath
 |oCASinSine function including first three derivatives (based on sin(double) in <cmath>)
 |oCCosCosine function including first three derivatives (based on cos(double) in <cmath>)
 |oCExpExponential function including first three derivatives
 |oCExp2Function $2^x$ including first three derivatives
 |oCLNNatural logarithm including first three derivatives
 |oCLog10Common (base 10) logarithm including first three derivatives
 |oCLog2Base 2 logarithm including first three derivatives
 |oCPowPower function with rational exponent $ k = \frac{dividend}{divisor} $ including first three derivatives
 |oCSinSine function including first three derivatives (based on sin(double) in <cmath>)
 |\CTanTangent function including first three derivatives
 oNConcepts
 |oCCopyConceptCheckStatic check if the requirements of CopyConcept are satisfied
 |oCMultiplyWithArithmeticFromLeftConceptCheckStatic check if the requirements of MultiplyWithArithmeticFromLeftConcept are satisfied
 |oCSummationConceptCheckStatic check if the requirements of SummationConcept are satisfied
 |oCMultiplicationConceptCheckStatic check if the requirements of MultiplicationConcept are satisfied
 |oCArithmeticConceptCheckStatic check if the requirements of ArithmeticConcept are satisfied
 |oCMatrixConceptCheckStatic check if the requirements of MatrixConcept are satisfied
 |oCVectorConceptCheckStatic check if the requirements of VectorConcept are satisfied
 |oCSymmetricMatrixConceptCheckStatic check if the requirements of SymmetricMatrixConcept are satisfied
 |oCFunctionConceptCheckStatic check if the requirements of FunctionConcept are satisfied
 |oCCopyConceptRequires copy-constructibility and copy-assignability
 |oCMultiplyWithArithmeticFromLeftConceptRequires that multiplication with double and int can be performed either by in-place multiplication or by multiplication from the left
 |oCSummationConceptRequires that summation can be performed either by in-place summation or free summation
 |oCMultiplicationConceptRequires that multiplication can be performed
 |oCArithmeticConceptRequirements on input types
 |oCMatrixConceptRequirements for matrices
 |oCVectorConceptRequirements for vectors
 |oCSymmetricMatrixConceptRequirements for symmetric matrices
 |\CFunctionConceptMinimal requirements for functions
 oNLinearAlgebra
 |oCDynamicSizeDeterminantDeterminant of dynamic size matrix with first three derivatives
 |oCDeviatorType of the deviator of a matrix $ A\in\mathbb{R}^{n,n} $, i.e. $ A - \frac{\mathrm{tr}(A)}{n}I $
 |oCSquaredEuclideanNormCompute squared matrix norm $ \|A\|^2 = A\negthinspace : \negthinspace A = \mathrm{tr}(A^TA) = \sum_{i,j} A_{ij}^2. $
 |oCNumberOfRowsSpecialize this for your matrix class. Number of rows must be provided by a static member variable called value
 |oCNumberOfColumnsSpecialize this for your matrix class. Number of columns must be provided by a static member variable called value
 |oCNumberOfRows< Matrix< T, n, m...>, MatrixConceptCheck >Specialization for vectors
 |oCNumberOfRows< Matrix< T, n, m >, MatrixConceptCheck >Specialization for matrices
 |oCNumberOfRows< Matrix< n, m >, MatrixConceptCheck >Specialization for matrices
 |oCNumberOfRows< Vector< T, n >, MatrixConceptCheck >Specialization for vectors
 |oCNumberOfRows< Vector< n >, MatrixConceptCheck >Specialization for vectors
 |oCNumberOfColumns< Matrix< T, n, m >, MatrixConceptCheck >Specialization for matrices
 |oCNumberOfColumns< Matrix< T, n, m, other...>, MatrixConceptCheck >Specialization for matrices
 |oCNumberOfColumns< Matrix< n, m >, MatrixConceptCheck >Specialization for matrices
 |oCInvariantTraits< Invariant::PRINCIPAL >Traits class for access of (shifted) principal invariants
 |oCInvariantTraits< Invariant::MODIFIED >Traits class for access of (shifted) modified principal invariants
 |oCInvariantTraits< Invariant::MIXED >Traits class for access of (shifted) mixed invariants
 |oCInvariantTraits< Invariant::MODIFIED_MIXED >Traits class for access of (shifted) modified mixed invariants
 |oCSquaredMatrixNormCompute squared matrix norm $ \|A\|^2 = A\negthinspace : \negthinspace A = \mathrm{tr}(A^TA) = \sum_{i,j} A_{ij}^2. $
 |oCFirstModifiedMixedInvariantFirst modified mixed invariant $\bar\iota_4=\iota_4\iota_3^{-1/3}$
 |oCSecondModifiedMixedInvariantSecond modified mixed invariant $\bar\iota_5=\iota_5\iota_3^{-2/3}$
 |oCThirdModifiedMixedInvariantThird modified mixed invariant $\bar\iota_6=\iota_6\iota_3^{-1/3}$
 |oCFirstModifiedPrincipalInvariantIsochoric (volume-preserving), first modified principal invariant $ \bar\iota_1(A)=\iota_1\iota_3^{-1/3} $, where $\iota_1$ is the first and $\iota_3$ is the third principal invariant
 |oCSecondModifiedPrincipalInvariantIsochoric (volume-preserving), second modified principal invariant $ \bar\iota_2(A)=\iota_2\iota_3^{-1/3} $, where $\iota_2$ is the second and $\iota_3$ is the third principal invariant
 |oCSecondPrincipalInvariantSecond principal invariant $ \iota_2(A)=\mathrm{tr}(\mathrm{cof}(A)) $ for $A\in\mathbb{R}^{n,n}$
 |oCShiftedInvariantPossibly scaled, shifted invariant $scaling (invariant - offset)$, where $offset = dim$ for the first two (principal,modified) invariants and $offset = 1$ for the third (principal,modified) and mixed invariants
 |oCLeftCauchyGreenStrainTensorLeft Cauchy-Green strain tensor $ F^T F $ for a symmetric matrix $ F $
 |oCLinearizedStrainTensorLinearized strain tensor $ \frac{1}{2}\left(F^T+F\right) $
 |\CStrainTensorStrain tensor $ \frac{1}{2}\left(F^T+F\right + F^T F) $
 oNMathematicalOperations
 |oCChainChain $ f\circ g $ of functions $f$ and $g$ of type F resp. G (F and G must satisfy the requirements of Concepts::FunctionConcept)
 |oCProductProduct $fg$ of functions of type F and G (F and G must satisfy the requirements of Concepts::FunctionConcept)
 |oCScaleScaling $ af $ of some function $ f $ with a double $ a $ (F must satisfy the requirements of Concepts::FunctionConcept)
 |oCSquaredSquared function (F must satisfy the requirements of Concepts::FunctionConcept)
 |\CSumSum of functions of type F and G (F and G must satisfy the requirements of Concepts::FunctionConcept)
 oCConstantWrap a constant
 oCIdentityIdentity mapping $ f(x)=x $
 oCVariableIndependent variable. Can be uniquely identified by its id
 oCBaseBase class for functions satisfying FunctionConcept. Required for enabling the operators in generate.hh
 oCOutOfDomainExceptionException for scalar function arguments that are outside the domain of the function
 oCNonSymmetricMatrixExceptionException for non-symmetric matrices if symmetric matrices are required
 oCZeroSpecialize this struct for your matrix type if a zero matrix cannot be generated via Matrix(0.)
 \CZero< Matrix, void_t< Checks::TryCallToFill< Matrix > > >Specialization for the case that a matrix can be set to zero by calling the member function fill(0)