RFFGen
 All Classes Namespaces Files Functions Typedefs Enumerations Groups
Public Member Functions | List of all members
RFFGen::CMath::Pow< dividend, divisor > Struct Template Reference

Power function with rational exponent $ k = \frac{dividend}{divisor} $ including first three derivatives. More...

#include <pow.hh>

Inheritance diagram for RFFGen::CMath::Pow< dividend, divisor >:
RFFGen::Base

Public Member Functions

 Pow (double x=1)
 Constructor. More...
 
void update (double x)
 Reset point of evaluation.
 
double d0 () const noexcept
 Function value.
 
template<int = -1>
double d1 (double dx=1.) const
 First (directional) derivative.
 
template<int = -1, int = -1>
double d2 (double dx=1., double dy=1.) const
 Second (directinal) derivative.
 
template<int = -1, int = -1, int = -1>
double d3 (double dx=1., double dy=1., double dz=1.) const
 Third (directional) derivative.
 
- Public Member Functions inherited from RFFGen::Base
template<class Arg >
void update (const Arg &)
 Update on changed input.
 
template<int id, class Arg >
void updateVariable (const Arg &)
 Empty variables.
 

Detailed Description

template<int dividend, int divisor = 1>
struct RFFGen::CMath::Pow< dividend, divisor >

Power function with rational exponent $ k = \frac{dividend}{divisor} $ including first three derivatives.

For scalar functions directional derivatives are less interesting. Incorporating this function as building block for more complex functions requires directional derivatives. These occur during applications of the chain rule. For the cases $k=-1$ and $k=2$ specializations are used that avoid the use of std::pow.

Constructor & Destructor Documentation

template<int dividend, int divisor = 1>
RFFGen::CMath::Pow< dividend, divisor >::Pow ( double  x = 1)
inlineexplicit

Constructor.

Parameters
xpoint of evaluation

The documentation for this struct was generated from the following file: