RFFGen
|
Isotropic models for the description of rubber materials (neo-Hookean and Mooney-Rivlin models). More...
Files | |
file | mooneyRivlin.hh |
Models based on the Mooney-Rivlin material law. Input argument is the deformation gradient. | |
file | neoHooke.hh |
Models based on the neo-Hookean material law. Input argument is the deformation gradient. | |
Functions | |
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()> | |
auto | RFFGen::incompressibleMooneyRivlin (double c0, double c1, const Matrix &F) |
Generate an "incompressible" Mooney-Rivlin material law , where is the first and the second principal matrix invariant. | |
template<class InflationPenalty , class CompressionPenalty , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()> | |
auto | RFFGen::compressibleMooneyRivlin (double c0, double c1, double d0, double d1, const Matrix &F) |
Generate a compressible Mooney-Rivlin material law , where is the first and the second principal matrix invariant. | |
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()> | |
auto | RFFGen::incompressibleNeoHooke (double c, const Matrix &F) |
Generate an "incompressible" neo-Hookean material law , where is the first principal matrix invariant . | |
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()> | |
auto | RFFGen::modifiedIncompressibleNeoHooke (double c, const Matrix &F) |
Generate an "incompressible" neo-Hookean material law , where is the modified first principal matrix invariant. | |
template<class InflationPenalty , class CompressionPenalty , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()> | |
auto | RFFGen::compressibleNeoHooke (double c, double d0, double d1, const Matrix &F) |
Generate a compressible neo-Hookean material law , where is the first principal matrix invariant. | |
template<class InflationPenalty , class CompressionPenalty , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()> | |
auto | RFFGen::modifiedCompressibleNeoHooke (double c, double d0, double d1, const Matrix &F) |
Generate a compressible neo-Hookean material law , where is the modified first principal matrix invariant. | |
Isotropic models for the description of rubber materials (neo-Hookean and Mooney-Rivlin models).