RFFGen
 All Classes Namespaces Files Functions Typedefs Enumerations Groups
Namespaces | Functions
neoHooke.hh File Reference

Models based on the neo-Hookean material law. Input argument is the deformation gradient. More...

#include "../../LinearAlgebra/invariants.hh"
#include "../../LinearAlgebra/strainTensor.hh"
#include "../../LinearAlgebra/unitMatrix.hh"
#include "../../finalize.hh"
#include "../volumetricPenaltyFunctions.hh"
#include "../../generate.hh"

Go to the source code of this file.

Namespaces

 RFFGen
 Main namespace of the RFFGen library.
 

Functions

template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::incompressibleNeoHooke (double c, const Matrix &F)
 Generate an "incompressible" neo-Hookean material law $ W(F)=c\iota_1(F^T F) $, where $\iota_1$ is the first principal matrix invariant .
 
template<class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::modifiedIncompressibleNeoHooke (double c, const Matrix &F)
 Generate an "incompressible" neo-Hookean material law $ W(F)=c\bar\iota_1(F^T F) $, where $\bar\iota_1$ is the modified first principal matrix invariant.
 
template<class InflationPenalty , class CompressionPenalty , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::compressibleNeoHooke (double c, double d0, double d1, const Matrix &F)
 Generate a compressible neo-Hookean material law $ W(F)=c\iota_1(F^T F)+d_0\Gamma_\mathrm{In}(\det(F))+d_1\Gamma_\mathrm{Co}(\det(F)) $, where $\iota_1$ is the first principal matrix invariant.
 
template<class InflationPenalty , class CompressionPenalty , class Matrix , int offset = LinearAlgebra::dimension<Matrix>()>
auto RFFGen::modifiedCompressibleNeoHooke (double c, double d0, double d1, const Matrix &F)
 Generate a compressible neo-Hookean material law $ W(F)=c\bar\iota_1(F^T F)+d_0\Gamma_\mathrm{In}(\det(F))+d_1\Gamma_\mathrm{Co}(\det(F)) $, where $\bar\iota_1$ is the modified first principal matrix invariant.
 

Detailed Description

Models based on the neo-Hookean material law. Input argument is the deformation gradient.